
Chapitre 2

Entropie et deuxième principe

2.4 Se frotter les mains

Se frotter les mains est un processus dissipatif qu’on désire modéliser
et quantifier. On considère les mains comme des solides indéformables et on
suppose qu’il n’y a pas de transfert de chaleur entre les mains et l’environne-
ment.

1) Déterminer la puissance extérieure P ext dissipée par le frottement durant
ce processus en termes de la force de frottement F fr et de la vitesse v,
supposée constante, d’une main par rapport à l’autre.

2) À température ambiante T , déterminer la source d’entropie ΣS de ce pro-
cessus.

Application numérique

∥F fr∥ = 1N, ∥v∥ = 0.1m/s et T = 25◦C

2.6 Échauffement par brassage

Dans une expérience analogue à celle de Joule, on utilise un moteur
électrique au lieu d’un poids de masseM pour brasser un liquide incompressible
homogène (fig. 2.1). On considère que la puissance extérieure P ext due au
moteur est connue, que la vitesse angulaire ω des pales du brasseur, de moment
d’inertie I, est constante et que le liquide reste immobile. De plus, on suppose
que l’énergie interne U est une fonction de la température T telle que U =
M cM T , où le coefficient cM , qui représente la capacité thermique par unité de
masse et de température, est connu et indépendant de la température.

1) Déduire l’accroissement de température ∆Ti→f dû au brassage de l’état
initial i au temps t = 0 à l’état final au temps t.

2) Déterminer l’expression de la variation d’entropie ∆Si→f durant ce proces-
sus dont la température initiale est T0.
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Application numérique

M = 200 g, P ext = 19 W, cM = 3 J g−1K−1, t = 120 s et T0 = 300 K.

2.8 Processus adiabatique réversible sur un gaz

Un gaz parfait à pression p et volume V est tel que son énergie interne
est donnée par U = c p V , où c est une constante sans dimension. Déterminer la
pression p (V ) pour une compression ou une expansion adiabatique réversible.

2.10 Compression thermique d’un ressort

On considère un piston de masse négligeable coulissant sans frotte-
ment dans un cylindre de section d’aire A, attaché à un ressort dont la constante
de rappel est k (fig. 2.2). Lorsque le cylindre est vide, le piston se trouve
en position x0. On le remplit d’un gaz parfait qui satisfait l’équation d’état
p V = NRT . L’énergie interne du gaz est donnée par U = cNRT où c > 0
est une constante et R > 0 également. Après remplissage, il se trouve alors à
l’équilibre en position initiale xi. On chauffe le cylindre qui se trouve alors à
l’équilibre en position finale xf . On suppose que ce processus est réversible et
que le système se trouve dans une enceinte à vide, c’est-à-dire que la pression
dans l’enceinte est nulle. La masse du piston n’est pas prise en considération
ici.

1) Déterminer les volumes initial Vi et final Vf , la pression initiale pi et fi-
nale pf , et les températures initiale Ti et finale Tf du gaz en termes des
paramètres k, A, x0, xi et xf .

I

Fig. 2.1 Un brasseur avec des pales de moment d’inertie I plongées dans un liquide visqueux
est entrâıné par un moteur électrique à vitesse angulaire constante ω.
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Fig. 2.2 Un piston enfermant un gaz passe de la position xi à la position xf , lorsque le
gaz contenu dans le cylindre est chauffé. Le piston est retenu par un ressort de constante
élastique k. La position au repos du ressort est en x0.

2) Montrer que la dérivée de la pression p par rapport au volume V est de la
forme,

dp

dV
=

k

A2

3) Déterminer le travail −Wi→f effectué par le gaz sur le ressort lorsque le
piston se déplace de xi à xf en termes des paramètres k, xi et xf .

4) Déterminer la variation d’énergie interne ∆Ui→f du gaz lorsque le piston
se déplace de xi à xf en termes des paramètres k, c, x0, xi et xf .

5) Déterminer la chaleur Qi→f fournie au gaz lorsque le piston se déplace de
xi à xf en termes des paramètres k, c, x0, xi et xf .


